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SUMMARY

This paper is concerned with a general method of analysisof boundary-value problems in thin shallow
shells of arbitrary plan form. Two specific shell configurations are considered. General solutions to the
governing partial differential equations are obtained in complex form, containing a sufficient number of
arbitrary elements to satisfy the four boundary conditions permitted by classical thin shell theory. An algorithm
for the determination of these arbitrary elements from a general form of boundary condition is presented. The
method of solution is based on I.N.Vekua's theory of elliptic partial differential edquations,

Part 1 of the paper is devoted to shallow spherical shells. An example calculation is given for a circular
planform shell, for which a closed form of solution may be obtained. The computed results show close
agreement with the exact solution,

Part 2 of the paper deals with shallow circular cylindrical shells, including the calculation of a shell the
planform of which is a square with rounded corners. Graphs of deflection and stress function are given.

1. Imtroduction.

The solution of boundary value problems of shallow shells has been the
subject of many papers during recent years. The plan form of the shell and
the particular boundary conditions to be applied have proved to be a major
influence in the choice of a method of solving the governing partial differen-
tial equations. This has resulted in a large number of solution methods
becoming available for shells-of either rectangular or circular plan form.
Most of these methods are suitable only for particular types of boundary
condition, for example a simply supported shell of rectangular plan form
may be analysed by the method of double Fourier-series expansion, but
this method does not apply to shells having any other type of boundary
conditions or plan form. A major difficulty has been the necesgsity to reduce
the governing partial differential equations to ordinary differential equations,
for which many general methods of solution are available (e.g. [4]). The
analysis of shells of arbitrary plan form has receivedlittle attention, precisely
because of this difficulty.

This paper presents a method of analysis of shallow shells of arbitrary
plan form, and subject to a general form of boundary condition. The shells
are assumed to be isotropic and elastic and to undergo small deflections
only. The analysis of each ghell then reduces to the solution of the well
known shallow shell equations [1], subject to the appropriate boundary condi-
tions. This system of partial differential equations, in cartesian co-ordinates
(%, y) is written as a single matrix equation. The solution of this reduces
to the consideration of two subsidiary second order matrix equations. These
equations are then solved by using the very extensive theory of elliptic
partial differential equations developed by I.N. Vekua in [2] This theory
is based on the reduction of the elliptic equations to equations of the
hyperbolic type by the introduction of new complex independent variables.
General solutions are then set up in terms of a special function of the basic
equation, called the Riemann Function and certain arbitrary analytic complex
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functions. These arbitrary functions are specified by satisfaction of the
shell boundary conditions. Complex variable theory permits the arbitrary
functions to be represented as Cauchy-type contour integrals, and their
determination from the boundary conditions reduces to the solution of a
real singular integral equation.

Two examples are given, the first of which provides a verification of
the numerical procedure, and the second shows how the technique can be
applied to hitherto unsolved problems. The first case is that of a shallow
spherical shell, supported on a mearidional circle and subjected to a uni-
formly distributed load. This boundary value problem is then converted,
using the method described, into a real singular integral equation. This
integral equation is solved numerically and the solution compared with
the exact solution. The second example is a boundary value problem in
a shallow circular cylindrical shell of less simple plan form.

The shell boundaries are assumed smooth, but no additional restrictions
are imposed, other than that shallow shell theory must be applicable. The
analysis of various non-symmetric plan forms of shallow shells therefore
becomes possible by a direct application of the method outlined in the
following paragraphs. A notable feature of the analysis is that it does not
involve the reduction of partial differential equations to ordinary differential
equations.

PART 1

1. General Solution of Boundary Value Problems for Shallow Spherical Shells
of Arbitrary Plan Form.

The partial differential equations governing the behaviour of the linearly
elastic and isotropic shallow spherical shell are given by Novozhilov [1] as:

AL - 2 aw) =0,

E h? 1 -
12(1-172) A Afw) = A(D) = q. (1.1)
The radial displacement w and stress function @ define the stress resul-
tants according to expressions given in [1] The loading q is assumed to
be normal to the surface. The shell thickiess, h, the Young's Modulus of
the shell material, E, and the Poisson's Ratio of the material v are con-

ax? ' ayY-
The equations 1.1, are more conveniently expressed by defining new
variables according to the following formulae:

2 2
considered to be constant, A = Laplace Operator, 8= . §—)

_ 12(1 - 2 W
@ I e———————— ®, W = -
rh r2/Eh (1.2)

Substitution of the new variables @ and w into the equations
1.1, yields the following system:
AA(D) - o® Aw) =0,
AA (W) + a®Aad) = a4q,} (1.3)

in which & is a convenient shell parameter defined by:
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2
a? = V12(1 -v2)

" (1.4)

The L. H.S. of the system 1.3 may be factorised and the equations written
in matrix form as:

PR TR
A A + = (1.5)
0 +1 a? 0 W at q

The general solution of the matrix partial differential equation 1.5 may
conveniently be written as:

HENROR]

Where Vy, Vi, Vg are (2 x 1) vectors satisfying the conditions:
1. Vy 1s any solution of 1.5;

2. V, is a solution of the homogeneous Laplace equation
A {Vl} =0 (1.7)
3. Vy, is a solution of the homogeneous equation:

SRR

The shallow spherical shell equations may therefore be solved from the
consideration of two subsidiary second-order systems 1.7 and 1.8.

The theory of elliptic partial differential equations of the form 1.8 has been
extensively developed by I.N.Vekua [2]. This theory is of great im-
portance to the applied mathematician since it permits the construction of
solutions to a wide variety of boundary value problems. The solution of
equation 1.8 (and 1.7 as a particular case of 1.8 with & = 0) is obtained
by a direct application of Vekua's theory as given in [2], [3].

New independent variables z, ¢ are defined as:

z=x+1iy, {=x-iy. (1.9)

The equation 1.8 may therefore be transformed from an elliptic equation
to an equation of the hyperbolic type by substitution of the new independent
variables z, £, i.e. 1.8 becomes:

Ez_a;f{vz} + 3 [22 "32] {Vz} =0 (1.10)

A special function of the equation 1.10 is now introduced, this is dependent
only on the form of equation 1. 10 and is independent of the particular domain
or boundary conditions under consideration. This function is named the
Riemann Function because of its formal analogy with Riemann's classical
method of integrating hyperbolic differential equations. The Riemann Function
G(z, ¢, t, 7) for equation 1.10 is defined as the solution of the following
Volterra integral equation:

o S ¢
1 -
[G(z,f,t,'T)J t Lz OJ J‘J. [G(tl,'rl,t,'r):] dt;d7y = Io, (1.11)
t T

where t = x4 + ly,, T = x4 -1y, are fixed points within the fundamental
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domain of analyticity of the coefficients of equation 1.10 (which in the case
a = constant is the whole complex plane); Iy is the unit matrix of order 2.

Solving equation 1.11 by the method of successive approximations, the
Riemann Function is expressed explicitly in terms of the Bessel Function
of the first kind and order zero:

0 -a?|(z-)&-7)
[G(z,é’,t, T):f = Jg 2 4 (1.12)
o

The Riemann Iunction of equation 1.10 may therefore be expressed as
a uniformly convergent series. This series is conveniently computed for
arbitrary values of the parameters by using the Cayley-Hamilton theorem
to evaluate the powers of the (2 x 2) matrix appearing in the argument of Jy.

The Riemann Function corresponding to equation 1.7 is obtained by putting
o = 0 in the relationships 1.11 and 1.12 i.e. it is the wunit matrix

of order 2.
The general solution of equation 1.10, and equation 1.8 from which it is
derived, in an arbitrary simply-connected domain, is given by Vekua as:

{VZ (z)} = Re | [G(z,o,z,'z’):l {dxz(z)} - fg% [G(G,o,z,i)]{ég(o)}da), (1.13)
0

where ¢4(z) is an arbitrary analytic complex vector of order 2. The general

solution of the IL.aplace Equation 1.7 is obtained from 1.13 by putting a =

0, i.e ;
[n@} =re {6} (1.14)

where ¢1(z) is an arbitrary analytic complex vector of order 2.
The solution of the shallow spherical shell equations can be represented
in the following form using 1.13, 1.14 and 1.6:

D(z)
{W(z)} = {VB(Z)} + Re ({(bl(Z)} + [G(z, o, Z,E)] {d)z(z)}
) ﬁf oo [G(G' O'Z'z)] {¢20)} do) ’ (1.15)

Equations 1.15 are more conveniently written as:

O(z) +1 0
= {Vo(z)} + Re { G(z,0, z,z):l {gb(z)}
W (z) 0 +1
z +1 0 (1.16)
0 _
_j.a_c [ _— G(G,O,z,z)J{é(o)} dc)

o]

¢ is now an arbitrary complex vector of order 4, and is determined
by satisfaction of the physical boundary conditions prevailing at the edge
of the shell. Classical thin shell theory admits 4 boundary conditions which
must be satisfied at each point on the shell perimeter. The most general
form of shell boundary conditions may be written:

jrk€n aj+k 6 ) |
£ | A (6 =de) b, 1.17
k=0 [ iad 0)] ox ayk {'vs'r { olto } (10

where ty; is any point on the shell perimeter:
A]- « is a (4 x 2) matrix, and f, is a (4 x 1) vector, which is zero in
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the case of homogeneous boundary conditions. The arbitrary complex
vector ¢ is now represented by a Cauchy-type contour integral around the
shell boundary as follows:

fo} = [(1-3)""1e(1-3) {uo} as + [ fuw}as, (1.18)
L L

Where t is any point on the smooth shell boundary L; ds is an element
of length of L; and u is an arbitrary real function of points t on L.. The
notation lg implies that the principal value of the logarithm is to be taken.
It should be noted that the order of the highest derivative of the unknown
in the boundary conditions 1.17 i.e. 'n', also appears in the integral re-
presentation 1.18. It is apparent therefore that derivatives of the R.H.S.
integrand of order (n - 2) are continuous; derivatives of order (n - 1) have
a singularity of the logarithmic type, and nth derivaties have a singularity
of the Cauchy type. Substituting for ¢ from 1.18 into 1.16 yields the final
representation of the solution of the shallow spherical shell equations as
follows:

{22:} = {Vo(z)} +f [Ko(z,t):l {u(t)} ds, (1.19)

L

where K, (z,t) is a (2 x 4) matrix given by:

+1 0 41 0 +1 O AP,
KLz,t) = G(o,0,2,Z)| *+ Re (lT) 1g(1—F)
0 71 0 +1 0 +1

. +1 0 n-1
_f_a_ G(o, 0,2, %) (1-;1) lg (1-;_T
801 0 +

Substitution of the general solution from 1.19 into the boundary conditions
1.17 yields a real singular integral equation for the unknown real vector u
as follows:

[Alt) ] {u(to)} +f [K(to. )] {u(t)}ds = {f(to)}, (1.21)
L

where A(tg), K(t, t) are (4 x 4) square matrices defined by:

dc> (1.20)

Ti(-1)"(n-1)! no
v . +1 0 +1 0
A(ty) = Re P 5 Xjfol I:An-j.j(to)] [0 +1 0 +1} ;
t0 (ds)tqo

Kt t) = "1 [:A (t ):l Ca [Koltat)], (o= +in)  (1.22)
0° i k=0 j.k\h0 a;lank 0s » 0 .

and f(ty) is a (4 x 1) vector given by

{f(to)} - {fo(to)} CE A, )] 2 [}

j, k=0 a;j 8nk

The solution for boundary-value problems for shallow spherical shells
in simply-connected domains may therefore be reduced to the solution of
a real singular integral equation of the type 1.19. The analytical solution
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of such equations is often very difficult, but a solution may be found easily
and simply by numerical approximation.

2. Nuwmervical Example of a Shallow Sphevical Shell Supported Avound a
Meridional Circle Under Uniform Loading

Consider a shallow spherical shell of radius 7. 25 inches, thickness 0.0625
inches, and supported on a meridional circle of radius a = 2. 75 inches. Let
the Poisson's ratio, v, of the material be 0.3. These dimensions refer to
a shell previously studied for the effect of elliptical discontinuities 5],

The boundary conditions at the edge of the shell are assumed to be:

=]

=¥
)

=]

62

I
(=]
"

n
(=}

S

W= (1.23)

Q@
©o
[

r ar

where r, 6, are polar co-ordinates of the shell plan.

The general solution for the shallow spherical shell 1,16 is written in
terms of a complex co-ordinate z = x + iy, where x and yrefer to a
system of cartesianco-ordinates. The boundary conditions 1. 23 in co-ordinates
(x, y) are:

2 2 2
— = 2, 9 W : ' . 20 0°W _
W = cosd 5x2 " 510 26 a8y + sin 9——8y2 0,

- cos? 220 __Q 2 20 _
@ = cos 68x2 + sin20 + sin 98)’2 0, (1. 24)

The general boundary conditions 1.17 specialised to describe the con-
ditions given by equation 1.24, become:

0 +1 1@} 0 W‘FJ 0 o 5%%{2%
0

cos?g O sin28 0
0 cos?6 0 sin26
L [o 0 {@} 0
0 O 8y2 0
sin? 0
0 sm@ 0 (1.25)

Using the A i notation, conditions -l. 25 become:

o) a® [0 a2 [0 o [
Agoq_ptRe 0] 141 bt Agp—f p=0. (1.26)
w 8x 9xdy | W ayilw

The order of the highest derivatives of the unknowns @ and W appearing
in the boundary conditions is 2, therefore the arbitrary (4 x 1) complex
vector ¢ of the general solution 1.16 may be represented as a contour
integral by the following identity:

{ (z)} =Lf (1-%) 1g (1-%—) {u(t)}ds +£[ {u(t)}ds, (1.27)

e
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The contour L in this example being a circle, with centre at the origin
of co-ordinates, and of radius 2.75 inches. Substitution of the integral
representation of ¢ into the general solufion 1.16 yields a formula of the
type 1.19 i.e.:

D(z) ) {VO(Z)} +f [Ko(z,t)] {u(t)}ds, (1.28)
L

w(z)

Where Ko(z, t) is defined by 1.20 with n = 2. Substitution of the general
solution 1. 28 into the boundary conditions 1. 26 yields a real singular integral
equation of the type 1.21.

[A(to)] {/J(to)} + f [K(to, 0] {u(t)}ds = {f(to)},(to= E+in, teel)  (1.29)
L

In this case the kernel of the integral equation has only a singularity of
the Cauchy-type, and does not have logarithmic singularities, since derivatives
of order (n - 1) do not appear in the boundary conditions.

The choice of a particular solution vector Vp is quite arbitrary; however,
it is usually convenient to consider the membrane solution of the shell as
being aparticular solution of the more complicated and higher-order different-
ial equations governing the bending theory.

The membrane solution of a spherical shell under uniform loading, g,
gives the direct stress resultants Ny and Ny as:

Ny = Ny = 3qa (1.30)

The modified stress function @ must therefore be given by a functfion of
the form:

B = tqo® (x*+y?) (1.31)

in order to satisfy 1.30. Substitution of ¢ from 1.31. into the governing
partial differential equations 1.1 shows that this function does indeed re-
present a particular solution; and the vector V; is therefore given by the
following relation:

{Vo(z)} = q{“laﬁ(}i-‘_yz)}. (1.32)

The kernel of the integral equation 1.29 is given by:

2 2
0 )
K(to,t) = Ao,o Kty t) + A2,08§2 Ktg, t) + Ay g 8_—§8n Kty t) +

2
o
+ AO,2a_ﬁ—2K0(t0’ t) (1.33)

The term A(to) of the equation 1.29 is obtained from the general re-
presentation 1.22 and may be reduced to a constant matrix given by:

0 0 0 0

A t = 0 0 0 0

(%) #/a 0 aw/a 0
0 7/a © w/a (1.34)

The (4 x 1) vector on the R, H.S. of 1.29 obtained from the general formula
1.22 is:
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2 .2 9
-7 (E°+07)
{f(to)} = q 0 . (1. 35)
-a?/2
0

The integrals appearing in the kernel function K{tg,t) are evaluated by a
multi-step Simpson's Rule procedure. The convergence of this integral
is very good and no difficulties are encountered in its evaluation, since
the integrands are all regular,

The solution of the singular integral equation 1.29 is obtained by a
numerical evaluation of the integral in terms of the unknown vector funct-
ions u; at points t; around the confour. This leads to a sysiem of (4 x n)
linear algebraic equations for upi; where n is the number of interval points
used in the integration. Numerical difficulties arising at the singularity in
the kernel K(t;, t) may be overcome by a special technique of expansion
of the unknown function 4 in a Taylor Series about the singular peint [3].
The results discussed in the following paragraph refer to a 4 and 6 step
Simpson's Rule integration around the contour with a Taylor Series trun-
cated after the second term. The integrals in the kernel were evaluated
by a 40 step Simpson's rule. The deflection and stress function at any
point in the shell are then determined by substituting the now known vector
i into the general solution 1.16.

A comparison with an exact solution of the governing differential equations
for a circular plan form shallow spherical shell shows very good agreement,
considering the small number or steps used in the numerical integration
of equation 1.29. The calculated normal deflections of the shell for 4 and
6 step contour integration are shown for comparison with the exact values
in the following table:

TABLE 1

Radial W w w
Coord, 4 step Int. 6 step Int. Exact.
0 0.433 0,543 0,841
0.4 0,447 0.540 0.519
0.8 0,461 0,557 0,537
1,2 0,480 0,582 0,561
1.6 0,487 0,591 0.572
2,0 0,434 0,528 0.5612
2.4 0,258 0.316 0.300
2.6 0.116 0.1286 0,123

The maximum discrepancy between the exact deflections and the deflections
obtained from a 6 step contour integration is 5%. The agreement is con-
siderably improved in regions immediately adjacent to the shell boundary,
which are most important for bending stress calculations.

The stress function @ calculated from the 6 step integration is also
within 5% of the exact values. Application of Richardson's Extrapolation
to the stress function values from 4 and 6 step contour integration will
improve the agreement to less than 1%, .as shown in table 2.

Further accuracy may be obtained, if desired, by the use of a more
accurate integration formula in the contour integration and retaining more
terms in the Taylor Series.
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TABLE 2,

Radial i} 1]
Coord. Exact. Calculated.
0.4 -13.821 -13.849
0.8 -13.819 -13.842
1.2 -13,799 -13,79¢9
1.6 -13.741 -13,692
2.0 -13. 647 -13.525
2.4 -13.592 ~13,422

PART 2

1. Boundary-Value Problems for Shallow Civcular Cylindrical Shells

The shallow circular cylindrical shell equations obtained from [l] are of
the form:

Eh 8%w _
A A(D) - - = 0,
Eh® 1 9%D _
a1y A4 T o5 = a (2.1)

As in the previous case of the spherical shell, it is convenient to define
new unknowns corresponding to the relations 1.2. Equations 2.1 may then be
written in matrix form as:

{6 0 o’ 92 {@ 0
A A - — = . (2. 2)
w -a® 0| oax? |w a4q}

The L. H.S. of the above matrix partial differential equation 2.2 may be
factorised, and the equation written in the form:

S5 8] oo s

Where K is a (2 x 2) matrix satisfying the relation:

(] - 1[5 5] (2.4)

It follows immediately that the general solution of the matrix equation 2.3
may be represented in the form:

SURORE

Where Vy is a (2 x 1) particular solution vector; Vi and Vy are (2 x 1)
function vectors satisfying the following homogeneous matrix partial differential
equations:

=l
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A{Vl} + 2 [K] 5—2{ {Vl}
A{VZ} -2 (k] & {Vz}

Consider now the 2nd order equation 2.6.1; substituting for the vector
V; a function defined by:

{v,} = el {o, } (2.7)

equation 2.6.1 becomes:

afu} - [&)* {o,} =0 | (2.8)

Similarly, substitution of a function defined by:

{Vg} = of[K]x {*"z} (2. 9)

intoequation 2. 6, 2yields an equation for ¢, identical in form to equation 2. 8.

The equation 2.8 is exactly analogous to equation 1.8 for V; con-
sidered in part 1 of this paper. Following the procedure already outlined
there, the general solution of 2. 8 in an arbitrary simply connected domain
may be represented in complex notation as:

{(q'z(z)]ﬂRe ([G(z,o,z,z)] {q’z(z)} —j' é—g- [G(o,0,2,2)] {di'z(c)} da) (2.10)

in which ¢1 o are arbitrary (2 x 1) analytic vectors, and G(z,{,t,7) is
the Riemann' Function associated with equation 2.8 and defined by:

([ o o (2-1X(6 ~7)
[owe.en] =se| 5] , (2.11)

-

0,

0, (2.6)

The general solution of the shallow circular cylindrical shell equations
may therefore be written from 2.5, 2.7 and 2.9 as:

?EZ: = {Vo(z)} + e-{k]X {’1/1(2)} + e[k]x {wz(z)} (2.12)
wW\Z

Substituting for ¢; and ¢9 from 2.10, and combining the (2 x 1) vectors
¢, and ¢o to form a (4 x 1) vector ¢, the solution 2.12 may be rewritten

as.
e o [l [ o

: G(o, 0, 2, %) o
2
I R d (2.13)
fao[ o G(U,O,Z,Z):l {05(0)} c)

0

The generalised procedure for the determination of the arbitrary com-
plex vector ¢ in the solution 2.13 from the general boundary conditions
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1.17 follows exactly the procedure outlined for spherical shells. A typical
application is given in the following example.

2. Example Calculation of a Shell, Square in Plan with Rounded Corners.

The shell is assumed to be characterised by the following parameters:
h = 0.036 ins., r = 12 ins., v =0.3

The boundary of the shell may be represented by the following paramefric
equation (6):

_ 2ba cos b @
X = ig cosf - o5 ),
y = 22 (sin@ - 5“2‘;’9). (2.14)

When a is the projected length of side of the square plan, and is taken
as 10 ins.
The boundary conditions are assumed to be:

é_—_w:.___;:———:o’ (2.15)

Where n is the normal to the shell bou.dary contour L. Using the para-
metric equation 2.14, the boundary conditions 2.15 may be rewritten in
matrix form using the cartesian coordinates (x,y) as:

- 2 T -
+1 0]JD 0 o | & ;0 0 0 0% |0
0 +1 {W}+ 0 0 &Ziw}+ 0 0 8x3y{W}+
0 0 cos?y 0 sin2v
0 0 0 cos?y 0 sin 27
Joo o]afEl.e

0 0 | ay?lw 0

sin2y 0 0

0 sin2y 0 (2.16)

Where ¥ is the angle given by:

v = tan™! (QX) + /2

dx
dy . 4 sin 40 X
dx 625 \ sin29 - 6 sinfsinbl + gin256 y
25 125 (2.17)

Following a similar procedure to that described in part 1, contour integral
representations of the arbitrary analytic vector ¢ consistent with the form
of the boundary conditions 2.16 are introduced as follows:

{o(z} Lf -2)1g (1-2) {mn}as +£f{u(t)}ds (2.18)

The contour L in this example being the square with rounded corners
defined by the parametric equation 2.14.

Substituting for ¢ from 2.18 into the relation 2.13, the following final
form of the general solution is obtained:
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B(z) xRl
Fiz) = {Vo(z)} + [e[] e [k:,]if [Ko(z, t)] {u(t)}ds,

Where Kz,t) is a (4 x 4) matrix defined by:

[G(o, 0,2,Z) o) +1 0 0 0
Kfz,t) = + Re 0 +1 0 O z z
o  Glo,o,z2) 0 0+l 0 (1_‘t)lg (l"t)

0 0 +1

z
G(o, 0,2,2Z) o
'fa% (1-5) 1g (L%)da

o G(o, 0, 2, Z) (2.20)

0

Substituting of the general solution 2.189 into the boundary conditions 2. 16
yields a real singular integral equation for the unknown (4 x 1) real vector
function u. This procedure is exactly analogous to that already described
in Part 1 of this paper. The solution of this integral equation yields the
values of u4 which may then be substituted back into the general solution
2.19. The stresses and deflections at any point in the shell then be
computed as required.

This example was solved for the case of a unit normal load q. The
solution procedure was similar to that described in the previous example.
Graphs of deflection and the boundary component of the stress function are
given as figs. 1 and 2.

|

20

.

Fig.1 Normal Deflection, W, /Distance from Centre Along Axes, D (ins)

120,
3

80
X-axis,
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0 1 —\—.._7
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Fig.2 Boundary Component of Modified Stress Function. $/Distance from Centre Along Axes, D (ins)
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