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SUMMARY 

This paper is concerned with a general method of analysis of boundary-value problems in thin shallow 
shells of arbitrary plan form. Two specific shell configurations are considered. General solutions to the 
governing partial differential equations are obtained in complex form, containing a sufficient number of 
arbitrary elements to satisfy the four boundary conditions permitted by classical thin shell theory. An algorithm 
for the determination of these arbitrary elements from a general form of boundary condition is presented. The 
method of solution is based on I.N.Vekua's theory of elliptic partial differential equations. 

Part I of the paper is devoted to shaIlow spherical sheils. An example calculation is given for a circular 
pianform shell, for which a closed form of solution may be obtained. The computed results show close 

agreement wish the exact solution. 
Part 2 of the paper deals with shallow circular cylindrical shells, including the calculation of a shell the 

planform of which is a square with rounded corners. Graphs of deflection and stress function are given. 

1. Introduct ion.  

The solution of boundary value problems of shallow shells has been the 
subject of many papers during recent years. The plan form of the shell and 
the particular boundary conditions to be applied have proved to be a major 
influence in the choice of a method of solving the governing partial differen- 
tial equations. This has resulted in a large number of solution methods 
becoming available for shells of either rectangular or circular plan form. 
Most of these methods are suitable only for particular types of boundary 
condition, for example a simply supported shell of rectangular plan form 
may be analysed by the method of double Fourier-series expansion, but 
this method d6es not apply to shells having any other type of boundary 
conditions or plan form. A major difficulty has been the necessity to reduce 
the governing partial differential equations to ordinary differential equations, 
for which many general methods of solution are available (e. g. [4]). The 
analysis of shells of arbitrary plan form has received little attention, precisely 
because of this difficulty. 

This paper presents a method of analysis of shallow shells of arbitrary 
plan form, and subject to a general form of boundary condition. The shells 
are assumed to be isotropic and elastic and to undergo small deflections 
only. The analysis of each shell then reduces to the solution of the well 
known shallow shell equations [i], subject to the appropriate boundary condi- 
tions. This system of partial differential equations, in cartesian co-ordinates 
(x, Yi is written as a single matrix equation. The solution of this reduces 
to the consideration of two subsidiary second order matrix equations. These 
equations are then solved by using the very extensive theory of elliptic 
partial differential equations developed by I. N. Vekua in [2]. This theory 
is based on the reduction of the elliptic equations to equations of the 
hyperbolic type by the introduction of new complex independent variables. 
General solutions are then set up in terms of a special function of the basic 
equation, called the Riemann Function and certain arbitrary analytic complex 
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functions. These arbitrary functions are specified by satisfaction of the 
shell boundary conditions. Complex variable theory permits the arbitrary 
functions to be represented as Cauehy-type contour integrals, and their 
determination from the boundary conditions reduces to the solution of a 
real singular integral equation. 

Two examples are given, the first of which provides a verification of 
the numerical procedure, and the second shows how the technique can be 
applied to hitherto unsolved problems. The first case is that of a shallow 
spherical shell, supported on a meridional circle and subjected to a uni- 
formly distributed load. This boundary value problem is then converted, 
using the method described, into a real singular integral equation. This 
integral equation is solved numerically and the solution compared with 
the exact solution. The second example is a boundary value problem in 
a shallow circular cylindrical shell of less simple plan form. 

The shell boundaries are assumed smooth, but no additional restrictions 
are imposed, other than that shallow shell theory must be applicable. The 
analysis of various non-symmetric plan forms of shallow shells therefore 
becomes possible by a direct application of the method outlined in the 
following paragraphs. A notable feature of the analysis is that it does not 
involve the reduction of partial differential equations to ordinary differential 
equations. 

P A R  T 1 

1. General Solution of Boundary Value Problems for Shallow Spherical Shells 
of Arbitrary Plan Form. 

The partial differential equations governing the behaviour of the linearly 
elastic andisotropic shallow spherical shell are given by Novozhilov [i] as: 

E h  s + ! = q.j" ( 1 .1 )  
12(1 - u 2) r 

The radial displacement w and stress function ~ define the stress resul- 
tants according to expressions given in [i]. The loading q is assumed to 
be normal to the surface. The shell thickness, h, the Young's Modulus of 
the shell material, E, and the Poisson's Ratio of the material u are con- 

c o n s i d e r e d  to  be  c o n s t a n t .  A = L a p l a c e  O p e r a t o r ,  ~ + . 

T h e  e q u a t i o n s  1 . 1 ,  a r e  m o r e  c o n v e n i e n t l y  e x p r e s s e d  by  d e f i n i n g  n e w  
v a r i a b l e s  a c c o r d i n g  to  t he  f o l l o w i n g  f o r m u l a e :  

~/12( 1 - u2I w 

r2h r 2/Eh 

Substitution of the new variables ~ and W into the equations 

( 1 .2 )  

i.i. yields the following system: 

A _ = o, ] 

J ( 1 .3 )  

i n  w h i c h  a i s  a c o n v e n i e n t  s h e l l  p a r a m e t e r  d e f i n e d  by :  
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2:  v/12(1- '2) ". (1.4) rh 
The L<H. S. of the system I. 3 may be factorised and the equations written 

in matrix form as: 

The general solutioh of the matrix partial differential equation i. 5 may 
conveniently be written as: 

W h e r e  V0, Vl, V2 a r e  (2 x 1) v e c t o r s  s a t i s f y i n g  the c o n d i t i o n s :  
i. Vo is any solution of i. 5; 
2. V 1 is a solution of the homogeneous Laplace equation 

A{VI }  = 0 (1.7) 
3. V 2 is a solution of the homogeneous equation: 

: 0 ( i .  8)  

The shallow spherical shell equations may therefore be solved from the 
consideration of two subsidiary second-order systems i. 7 and i. 8. 

The theory of elliptic partial differential equations of the form I. 8 has been 
extensively developed by I.N. Vekua [2]. This theory is of great im- 
portance to the applied mathematician since it permits the construction of 
solutions to a wide variety of boundary value problems. The solution of 
equation i. 8 (and i. 7 as a particular case of i. 8 with a = 0) is obtained 
by a direct application of Vekua's theory as given in [2], [3]. 

New independent variables z, ~ are defined as: 

z = x+iyo ~ =x - iy. (1.9) 

The equation i. 8 may therefore be transformed from an elliptic equation 
to an equation of the hyperbolic type by substitution of the new independent 
variables z, ~, i.e. 1.8 becomes: 

} _:]{ } a z  ~ V2 + ~ a2 V 2 = 0 ( 1 . 1 0 )  

A special function of the equation i. 10 is now introduced, this is depeadent 
only on the form of equation i. i0 and is independent of the particular domain 
or boundary conditions under consideration. This function is named the 
Riemann Function because of its formal analogy with Riemann's classical 
method of integrating hyperbolic differential equations. The Riemann Function 
G (z, ~, t, T) for equation i. i0 is defined as the solution of the following 
Volterra integral equation: 

G ( z , ~ , t , ' r )  + 4 2 

where t = x 0 + iy0~ T = x 0 _ iy 0 

z 

~ f  [G(tl,~'l,t,~')]dtid71 = 12, (l. ll) 

t "= 

are fixed points within the fundamental 
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domain of analyticity of the coefficients of equation i. i0 (which in the case 
= constant is the whole complex plane); 12 is the unit matrix of order 2. 
Solving equation i. ii by the method of successive approximations, the 

Riemann Function is expressed explicitly in terms of the Bessel Function 
of the first kind and order zero: 

if2 
(1.12) 

where r is 
solution of the 
0, i . e .  

The Riemann Function of equation I. i0 may therefore be expressed as 
a uniformly convergent series. This series is conveniently computed for 
arbitrary values of the parameters by using the Cayley-Hamilton theorem 
to evaluate the powers of the (2 x 2) matrix appearing in the argument of J0. 

The Riemann Function corresponding to equation i. 7 is obtained by putting 
= 0 in the relationships i. ii and i. 12 i.e. it is the unit matrix 

of order 2. 
The general solution of equation i. i00 and equation i. 8 from which it is 

derived, in an arbitrary simply-connected domain, is given by Vekua as: 
Z 

o 
an arbitrary analytic complex vector of order 2. The general 
Laplace Equation i. 7 is obtained from I. 13 by putting ~ = 

where r is an arbitrary analytic complex vector of order 2. 
The solution of the shallow spherical shell equations can be represented 

in the following form using I. 13, i. !4 and i. 6: 

Z 

Equations i. 15 are more conveniently written as: 

(z)J +i 

J~  ~ - G (cr, 0, z ,  ~) ~((r) d 
o ~ +i 

r is now an arbitrary complex vector of order 4, and is determined 
by satisfaction of the physical boundary conditions prevailing at the edge 
of the shell. Classical thin shell theory admits 4 boundary conditions which 
must be satisfied at each point on the shell perimeter. The most general 
form of shell boundary conditions may be written: 

E Aj .k( to)  ~ = fo(to) , (1.17) 
j,k=O 8x  j Oy k 

where t o is any point on the shell perimeter: 
A j, k is a (4 x 2} matrix, and f0 is a (4 x i) vector, which is zero in 
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the case of homogeneous boundary conditions. The arbitrary complex 
vector r is now represented by a Cauchy-type contour integral around the 
shell boundary as follows: 

L L 
Where t is any point on the smooth shell boundary L; ds is an element 

of length of L; and /~ is an arb i t ra ry  real function of points t on L. The 
notation ig implies that the principal value of the logarithm is to be taken. 
It should be noted that the order of the highest derivative of the unknown 
in the boundary conditions i. 17 i.e. 'n', also appears in the integral re- 
presentation i. 18. It is apparent therefore that derivatives of the R.H.S. 
integrand of order (n - 2) are continuous; derivatives of order (n - i) have 
a singularity of the logarithmic type, and nth derivaties have a singularity 
of the Cauchy type. Substituting for r from I. 18 into i. 16 yields the final 
representation of the solution of the shallow spherical shell equations as 
follows: 

L 

where  K o ( z , t )  is  a (2 x 4) m a t r i x  g iven  by: 

Ko(z, t )  = G ( o , o , z , ~  + Re 1- F lg 1 - [  
+1 +1 0 + 

-/0@ +1 G ( ~ , o , z , g  t )  (1 -~- )  da  (1 .20)  

Subs t i t u t i on  of the g e n e r a l  so lu t ion  f r o m  1 .19  into  the b o u n d a r y  cond i t i ons  
1 .17  y i e l d s  a r e a l  s i n g u l a r  i n t e g r a l  equa t ion  fo r  the unknown r e a l  v e c t o r  ~ 
as fo l lows:  

L 
where A(t0), K(t0, t) are (4 x 4) square matr ices defined by: 

(~ri(-l)n(n-l)! n [ ] [+: 0 +1 
A(t o) = Re --~ x E i j An_j,j(tO) +1 0 

\ ~-1/dt  ~ j=o 
\ t o  L 

E ] K(to, t) = ~ j,k(tO) KO(tO, t) (to = ~ + irJ) 
j,k=O O~ j Or~ k ' 

(1.21) 

( t .  22) 

and f(t0) is a (4 x i) vector given by 

j+k~n 

The solution for boundary-value problems for shallow spherical shells 
in simply-connected domains may therefore be reduced to the solution of 
a real singular integral equation of the type I. 19. The analytical solution 
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of such equations is often very difficult, but a solution may be found easily 
and simply by numerical approximation. 

2. Numerical  Example of a Shallow Spherical Shell Supported Around a 
Meridional Circle Under Uniform Loading 

Consider a shallow spherical shell of radius 7.25 inches, thickness 0. 0625 
inches, and supported on a meridional circle of radius a = 2.75 inches. Let 
the Poisson's ratio, u, of the material be 0.3. These dimensions refer to 
a shell previously studied for the effect Of elliptical discontinuities [5]. 

The boundary conditions at the edge of the shell are assumed to be: 

W = - ~ = ~ = O, (1.23) 
a r  2 a r  2 

w h e r e  r ,  0, a r e  p o l a r  c o - o r d i n a t e s  of the she l l  p lan .  
The g e n e r a l  s o l u t i o n  fo r  the s h a l l o w  s p h e r i c a l  she l l  1 .16  is  w r i t t e n  in 

t e r m s  of a c o m p l e x  c o - o r d i n a t e  z = x + i f ,  w h e r e  x and y r e f e r  to a 
sy s  tern of c a r t e s i a n  c o -  o r d i n a t e  s. The b o u n d a r y  c o n d i t i o n s  1 .2  3 in c o-  o r d i n a t e  s 
(x, y) are: 

2_ . 20 O2W l W = cos20~+ sin20 @2W + sm ~ = 0, 
O x ~ axay  y ) cos~O a ~  o ~  + sin~O a~3 = ~ + sin2 axay  0-T o, (1.24) 

The general boundary conditions i. 17 specialised to describe the con- 
ditions given by equation i. 24, become: 

I+i olo2   io o 1 + o o ~ [ ~ j +  o o ~ + 
os20 0 sin20 0 

Lo oos~OJ L o sin20J 

+I ~ oO~ 
Lo sin2OJ (i. 25) 

Using the Ai. j notation, conditions "i. 25 become: 

ao.o + -A~,o - - - ~ . ~ .  + -~.~ ~ + - A o , ~  ;, : o. (~, 26) 
axay ay2LwJ 

The o r d e r  of the h i g h e s t  d e r i v a t i v e s  of  the u n k n o w n s  ~ and  W a p p e a r i n g  
in the b o u n d a r y  c o n d i t i o n s  is  2, t h e r e f o r e  the a r b i t r a r y  (4 x 1) c o m p l e x  
v e c t o r  r of the g e n e r a l  s o l u t i o n  1 .16  m a y  be r e p r e s e n t e d  as a c o n t o u r  
i n t e g r a l  by the fo l lowing  ident i ty :  

{ (z)} = f ( l-t) lg (l-t) {/~(t)}ds + f  {/.~(t)}ds, (1.27) 
L L 
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The contour L in this example being a circle, with centre at the origin 
of co-ordinates, and of radius 2. 75 inches. Substitution of the integral 
representation of r into the general solution I. 16 yields a formula of the 
type 1.19 i.e.: 

-- ~ LVo(~. + (1.28) 
-~ ( z ) j  L 

Where K0(z, t) is defined by i. 20 with n = 2. Substitution of the general 
solution i. 28 into the boundary conditions I. 26 yields a real singular integral 
equation of the type i. 21. 

[A(t0) ] { , ( t o ) } +  f [ K ( t 0 ,  t) ] { ~ ( t ) } d s  = {f( t0)} , ( t0  = ~+ir~ t0~L ) (1 .29 )  
L 

In this  c a s e  the k e r n e l  of the i n t e g r a l  e q u a t i o n  has  only a s i n g u l a r i t y  of  
the C a u e h y - t y p e ,  a n d d o e s  not  have  l o g a r i t h m i c  s i n g u l a r i t i e s ,  s i n c e  d e r i v a t i v e s  
of o r d e r  ( n -  1) do not  a p p e a r  in the b o u n d a r y  c o n d i t i o n s .  

The c h o i c e  of a p a r t i c u l a r  s o l u t i o n  v e c t o r  V0 is  qui te  a r b i t r a r y ;  h o w e v e r ,  
it is  u s u a l l y  c o n v e n i e n t  to c o n s i d e r  the m e m b r a n e  s o l u t i o n  of the s h e l l  as  
be ing  a p a r t i e u l a r  so lu t i on  of the m o r e  c o m p l i c a t e d  and h i g h e r - o r d e r  d i f f e r e n t -  
ia l  e q u a t i o n s  g o v e r n i n g  the bend ing  t h e o r y .  

The m e m b r a n e  so lu t i on  of a s p h e r i c a l  she l l  u n d e r  u n i f o r m  load ing ,  q, 
g i v e s  the d i r e c t  s t r e s s  r e s u l t a n t s  Nx and Ny as:  

N x = Ny = � 8 9  (1.30) 

The m o d i f i e d  s t r e s s  func t ion  ~ m u s t  t h e r e f o r e  be g iven  by a func t ion  of 
the fo rm:  

= �88 2 (x 2+y2)  (1 .31 )  

in order to satisfy 1.30. Substitution of ~ from i. 31. into the governing 
partial differential equations i. 1 shows that this function does indeed re- 
present a particular solution; and the vector V 0 is therefore given by the 
following relation: 

The kernel of the integral equation i. 29 is given by: 

32 32 

K(t o, t) = Ao, o Ko(t o, t) + A2, o~- ~ Ko(to, t) r .A1, 1 8~SrJ K~ t) + 

32 
+ A0,2~-~K0( t  0, t) ( 1 .33 )  

The term A(t0) of the equation I. 29 is obtained from the general re -  
presentation i. 22 and may be reduced to a constant matrix given by: 

A(to)  = 

I o o 
o o 

0 7r (1 .34 )  

The (4 x i) vector on the R.H.S. of i. 29 obtained from the general formula 
i. 22 is: 
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(~ +2 
= 0 . ( 1 . 3 5 )  { f ( t o ) }  q _ a 2 / 2  

The  i n t e g r a l s  a p p e a r i n g  in the k e r n e l  f u n c t i o n  K(t0,  t) a r e  e v a l u a t e d  by a 
m u l t i - s t e p  S i m p s o n ' s  Rule  p r o c e d u r e .  The  c o n v e r g e n c e  of th is  i n t e g r a l  
is  v e r y  good and no d i f f i c u l t i e s  a r e  e n c o u n t e r e d  in i t s  e v a l u a t i o n ,  s i n ce  
the i n t e g r a n d s  a r e  a l l  r e g u l a r .  

The  s o l u t i o n  of the s i n g u l a r  i n t e g r a l  e q u a t i o n  1 .2 9  is  o b t a i n e d  by a 
n u m e r i c a l  e v a l u a t i o n  of the i n t e g r a l  in t e r m s  of  the unknown v e c t o r  f u n c t -  
i o n s ~ i  a t  po in t s  t~ a r o u n d  the c o n t o u r .  Th i s  l e a d s  to a s y s t e m  of (4 x n) 
l i n e a r  a l g e b r a i c  e q u a t i o n s  f o r  ~i; w h e r e  n is  the n u m b e r  of i n t e r v a l  p o in t s  
u s e d  in the i n t e g r a t i o n .  N u m e r i c a l  d i f f i c u l t i e s  a r i s i n g  at  the s i n g u l a r i t y  in 
the k e r n e l  K(t0, t} m a y  be o v e r c o m e  by a s p e c i a l  t e c h n i q u e  of e x p a n s i o n  
of the unknown func t ion  t2 in a T a y l o r  S e r i e s  abou t  the s i n g u l a r  po in t  [3]. 
The r e s u l t s  d i s c u s s e d  in the fo l lowing  p a r a g r a p h  r e f e r  to a 4 and 6 s t ep  
S i m p s o n ' s  R u l e  i n t e g r a t i o n  a r o u n d  the c o n t o u r  with a T a y l o r  S e r i e s  t r u n -  
c a t e d  a f t e r  the s e c o n d  t e r m .  The i n t e g r a l s  in the k e r n e l  w e r e  e v a l u a t e d  
by a 40 s t ep  S i m p s o n ' s  r u l e .  The d e f l e c t i o n  and s t r e s s  f u n c t i o n  at  any  
point in the shell are then determined by substituting the now known vector 
/2 into the general solution i. 16. 

A comparison with an exact solution of the governing differential equations 
for a circular plan form shallow spherical shell shows very good agreement, 
considering the small number or steps used in the numerical integration 
of equation i. 29. The calculated normal deflections of the shell for 4 and 
6 step contour integration are shown for comparison with the exact values 
in the following table: 

TABLE 1 

Radial ~ ~ 

Coord. 4 step Int. 6 step Int. Exact. 

0 0.433 0.543 0.541 
0.4 0.447 0.540 0.519 

0.8 0.461 0.557 0.537 
1.2 0.480 0.582 0.561 
1.6 0.487 0.591 0.572 

2.0 0.434 0.528 0.512 
2.4 0.258 0.316 0.300 
2.6 0.116 0.126 0.123 

The maximum discrepancy between the exact deflections and the deflections 
obtained from a 6 step contour integration is 5%. The agreement is con- 
siderably improved in regions immediately adjacent to the shell boundary, 
which are most important for bending stress calculations. 

The stress function ~ calculated from the 6 step integration is also 
within 5% of the exact values. Application of Richardson's Extrapolation 
to the stress function values from 4 and 6 step contour integration will 
improve the agreement to less than i%, as shown in table 2. 

Further. accuracy may be obtained, if desired, by the use of a more 
accurate integration formula in the contour integration and retaining more 
terms in the Taylor Series. 
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TABLE 2. 

Radial ~ 
Coord. Exac t .  Calculated. 

0.4 -13.821 -13.849 
0.8 -13.819 -13.842 
1.2 -13.799 -13.799 
1.6 -13.741 -13.692 
2.0 -13.647 -13.525 
2.4 -13.592 -13.422 

P A R  T 2 

i. Boundary-Value Problems /or Shallow Circular Cylindrical Shells 

The  s h a l l o w  c i r c u l a r  c y l i n d r i c a l  s h e l l  e q u a t i o n s  o b t a i n e d  f r o m  [1] a r e  of  
the f o r m :  

A Ehr 0x2 0, ] 
Eh 3 1 32~ 

12(1-v2)  A A (w) + ~ ~ = q. (2 .1 )  

As in the previous case of the spherical shell, it is convenient to define 
new unknowns corresponding to the relations i. 2. Equations 2.1 may then be 
written in matrix form as: 

A A - - -  : . ( 2 . 2 )  
_or2 Ox 2 ~4q 

The L. H S. of the above matrix partial differential equation 2.2 may be 
f a c t o r i s e d ,  and the e q u a t i o n  w r i t t e n  in the f o r m :  

o o • 

W h e r e  K is  a (2 x 2) m a t r i x  s a t i s f y i n g  the  r e l a t i o n :  

= 1 

, ( 2 . 3 )  

( 2 . 4 )  

It f o l l o w s  i m m e d i a t e l y  t ha t  the g e n e r a l  s o l u t i o n  of the m a t r i x  e q u a t i o n  2 . 3  
m a y  be r e p r e s e n t e d  in the f o r m :  

W h e r e  V0 is  a (2 x 1) p a r t i c u l a r  s o l u t i o n  v e c t o r ;  V1 and  V2 a r e  (2 x 1~ 
f u n c t i o n  v e c t o r s  s a t i s f y i n g  the f o l l o w i n g  h o m  ogene  ous  m a t r i x  p a r t i a l  d i f f e r e n t i a l  
e q u a t i o n s :  
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C o n s i d e r  now the 2nd o r d e r  e q u a t i o n  2 . 6 . 1 ;  s u b s t i t u t i n g  f o r  the v e c t o r  
V 1 a f unc t i on  d e f i n e d  by: 

{ V 1 )  = e'[k]x ~i} 

equation 2. 6. i becomes: 

Similarly, substitution of a function defined by: 

(2. 7) 

(2 .8 )  

into equation 2. 6.2yields anequation for ~2 identical in form to equation 2.8. 
The equation 2.8 is exactly analogous to equation 1.8 for V 2 con- 

sidered in part 1 of this paper. Following the procedure already outlined 
there, the general solution of 2.8 in an arbitrary simply connected domain 
may be represented in complex notation as: 

z 

{~,~z)} = Re ([ G(z,o,z,~)] ~ ~,~z)} -~ ~ [G(o.,o,z,g)] (~,2( o.)} do-)(2, i0) 
0 

in which r 2 are arbitrary (2 x I) analytic vectors, and G(z,~,t,~')is 
the Riemann' Function associated with equation 2.8 and defined by: 

, = (2.11) 

_0~ 2 

The general solution of the shallow circular cylindrical shell equations 
may therefore be written from 2.5, 2.7 and 2.9 as: 

{~W (z'I =(z)j fVL0(z)~ + e'[k]x~l(z) } + e[k]x ~2(z)} (2 12) 

Substituting for~] and ~2 from 2. i0, and combining the (2 x i) vectors 
r and ~.2 to form a (4 x i) vector r the solution 2.12 may be rewritten 
as: 

{ '(z)~ = {V0(z)} + [e [k]Xe" [k]X]Re ([G(z'~ z~-~) G(z,o~ {r 

~(z)J 

f 0 (~, o, z, ~) o 
- ~-~ ~o.) do. (2.13) 

0 o G( ~, o, z, 

The  g e n e r a l i s e d  p r o c e d u r s ,  f o r  the d e t e r m i n a t i o n  of the a r b i t r a r y  c o m -  
p l e x  v e c t o r  r in the s o l u t i o n  2 . 1 3  f r o m  the g e n e r a l  b o u n d a r y  c o n d i t i o n s  
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i. 17 follows exactly the procedure outlined for spherical shells. A typical 
application is given in the following example. 

2. Example Calculation of a Shell, Square in Plan with Rounded Corners. 

The shell is assumed to be characterised by the following parameters: 
h = 0.036 ins., r = 12 ins., u = 0.3 

The boundary of the shell may be represented by the following parametric 
equation (6): 

x - 4 8  - - T S - -  / ' 

25a ( ) (2 .14)  Y 48 sinO - s~25------e " 

When a is the projected length of side of the square plan, and is taken 
as i0 ins. 

The boundary conditions are assumed to be: 

= w . . . .  0, (2. 15) 
an 2 an 2 

Where n is the normal to the shell bou_• contour L. Using the para- 
metric equation 2.14, the boundary condi.tions 2.15 may be rewritten in 
matrix form using the cartesian coordinates (x,y) as: 

+1 + + 
oOS2~ , o ~ a x ~ L w J  sinO 2 7 0 / ~ ' x ' ~  

sin 2~J [i 0].., {0} + 0 0 a y 2 L w _ [  : 
in2f 0 . 

sin2T 0 (2.16) 

Where "Y is the angle given by: 

dx 625 sin20 - 6 s i n O s i n 5 0  + sin250 
25 125 (2.17) 

Following a similar procedure to that described in part i, contour integral 
representations of the arbitrary analytic vector r consistent with the form 
of the boundary conditions 2.16 are introduced as follows: 

L L 

The c o n t o u r  L in this  e x a m p l e  b e i n g  the s q u a r e  with r o u n d e d  c o r n e r s  
de f ined  by the p a r a m e t r i c  e q u a t i o n  2 .14 .  

S u b s t i t u t i n g  for  r f r o m  2 .18  into the r e l a t i o n  2 . 1 3 ,  the f o l l o w i n g  f ina l  
f o r m  of the g e n e r a l  s o l u t i o n  is  ob ta ined :  
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w ( z ) j  L 

W h e r e  K0(z,  t) i s  a (4 x 4) m a t r i x  d e f i n e d  by:  

Ko(z, t) = + R e  +1 0 
o G ( o , o , z , g  0 +1 -' - [  

0 0 + 
z 

1 lg  1-  d . 
- o o ,  (2 ,  2 0 )  

0 

Substituting of the general solution 2.19 into the boundary conditions 2.16 
yields a real singular integral equation for the unknown (4 x i) real vector 
function /~. This procedure is exactly analogous to that already described 
in Part 1 of this paper. The solution of this integral equation yields the 
values of /~ which may then be substituted back into the general solution 
2.19. The stresses and deflections at any point in the shell then be 
computed as required. 

This example was solved for the case of a unit normal load q. The 
solution procedure was similar to that described in the previous example. 
Graphs of deflection and the boundary component of the stress function are 
given as figs. 1 and 2, 

60. 

/,0. 

20. X ~  

1 2 ~y3 /. "%5 
o D 

-20. 

Fig. i Normal Deflection, ~./Distance from Centre Along Axes, D (ins) 

120. 

80_ 

40. 

-I,O 

1 2 
1 - - - - ~  

//A-ox,, 

' . - /1  ? 
D 

Fig. 2 Boundary Component of Modified Stress Function. ~/Distance from Centre Along Axes, D (ins) 
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